
N96- 12921

J

li CLIPS Interface Development Tools and Their Application

Bernard A. Engel 1, Chris C. Rewerts, Raglmvan Srinivasan,

Joseph B. Rogers, and Don D. Jones

Abstract

A package of C-based PC user interface development functions has been developed and integrated into CLIPS.
The primary function is ask which provides a means to ask the user questions via multiple choice menus or the key-
board and then remm the user response to CLIPS. A parameter-like structure supplies information for the interface.

Another function, show, provides a means to paginate and display text. A third function, title, formats and displays
title screens. A similar set of C-based functions that age more general and thus wiU run on UNIX and other

machines have also been developed. Seven expert system applications were transformed from commercial develop-
ment environments into CLIPS and utilize ask, show, and title. Development of numerous new expert system

applications using CLIPS and these interface functions has staned. These functions greatly reduce the time

required to build interfaces for CLIPS applications.

Introduction

The Agricultural Engineering Depar_ent at Purdue University has been developing agricultural expert systems
(ES) applications since 1984. Numerous applications have been developed since that time including GMA (Grain

Marketing Advisor), DSS (Dam Site Selector), DBL-CROP (double crop soybean management ES), and MELON
(muskmelon disease diagnosis ES). The use of these and other applications has been limited because of runtime

licensing fees, inability to run on machines other than those running DOS, and difficulties with integrating applica-
tions with other software. In addition, the academic community has not been interested.in the paperwork associated

with the licensing arrangements of most ES development tools. Many of the commercial tools require development

and delivery on a single type of machine such as one that runs only DOS. In Indiana, the Cooperative Extension

Service (a large potential user for most agricultural ES) have UNIX machines. Therefore, many of the agricultural
ES that would be of interest to people in these offices will not run on their machines. The ES that are now being

developed often require integration with other computer tools. Most commercial ES development tools do not pro-
vide adequate facilities for integration. As a result of these problems, CLIPS was examined as a potential develop-

ment and delivery tool for agricultural expert systems applications.

One disadvantage of CLIPS, for our purposes, was the lack of a cost-free end-user interface for use with PC

compatible machines. The interface available for the PC version of CLIPS requires the purchase of a screen-
handling command library from a third-party vendor. End-users of ES produced with the interface provided would

have to pay a fee for its use. Also, it was more a development interface than an end-user interface. To avoid such

complications, we have built a set of interface functions and integrated them with CLIPS.

1 The authors are: B.A. EngeL Anisumt Prof_tor;, C.C. Rewertt, Research Assistant; R. SrinivMm. Research Assistant; J.B. Roger, Al

Syttenu Programmer;, and D.D. Jones, Professor. Agricultt_al Faxgineegmg Deparanem, Purdue University, West Lafayette, IN 47907

2 ark@, show@, mcl title© Copyright 1990 Purdue Research Foundation.

458 Pm.d_]m=t'_ - I

User Interfaces

For a computer program to function, it must interface with an outside manipulator or controller. Some programs

are controlled by other programs. An interface needed in such situations can typically be described outright, in
well-defined terms. The interchanges will be predictable, because machines are involved. In a computer program

developedforuse by humans, the interfacebecomes a much differentissue.The operationof theinterfacehas a

directbearingon how wellone can make useoftheprogram.The usermust be ableto"run"theprogram whilepro-

vidingany needed inputsand making any requestsformodificationof runtimcfunctions.There aremany common

programs withsimpleoperationsthatfunctionautomaticallywhen invoked,such asusing/aor dirtolistfilesina

DOS directory.However, thcprograms wc refertointhecontextofthispaperareapplicationprograms requiring

more user-machineinteractionduringprogram operation,such asan ES or simulation.Insuch cases,"theinterface

isthesystemformost users"[I].

The Need for an End-User Interface Package

In developing numerous application programs for distribution to a large audience of users with a wide range of

computer backgrounds, we needed an interface package that could be incorporated into separate application pro-
grams.Of course,we were not thefirstto discoverthisneed.In working withthedesignof severalsoftwarepro-

jects,Fancud and Kirk[2]notedthefollowingcomplaints:

a. Interfacedevelopment was consuming a greatpan of the effortsof ES developersand representeda

significant portion of the resulting code - as much as 60%.

b. ES developers were usually inexperienced at interface design, and generally had no interest in becoming

experts in low level graphics or other interface tools.

c. There was no consistency of interfaces across applications.

d. It was difficult to provide multiple interfaces across applications.

Some of the benefits we hoped to gain by the development of a user interface that could be used by numerous appli-
cations included:

a. Users can employ a small number of computer concepts and syntactical rules, therefore they can concentrate
on the task.

b. Program designers find it convenient to reduce the number of situations in which the user can make errors.

c. Different applications using the same interface package will have the same "look and feel" to the user. Thus,
once a user becomes acquainted with an interface through the use of one application, the use of subsequent

programs with the same type of interface may be made simpler.

Implementation and Development Background

This paper documents a simple user interface and its integration into CLIPS. Although all examples and most
of the discussion of the user interface will revolve around its implementation within CLIPS, applications are not

limited to ES. Most computer applications designed for a general end-user audience require an interface of one sort
or another. With an ES, the operation typically starts with a question and answer session between the user and the

program, much like a human expert would use to ascertain the definition of the problem to be addressed. A good

interface package would allow the developer of the F_,Sa straight-forward means to define how the F..Sshould go
about the task of this interchange. We will describe how the interface and CLIPS communicate, how the interface

functionsam used from withina CLIPS ES program,and how theinterfacepresentsitsinformationand queriesto

theend-user.

459 P..i.eI...fKe-2

Appearanceof Askto theEnd.User

Our userinterfaceisdesignedtouse thegraphicscapabilitiesof thePC on which itisrunning,includinghigh

resolutiongraphics,ifavailable.The interfacepresentsitselfincolor,ifavailable.When graphiccapabilitiesare

availableon a givenmachine,provisionshavebeen made touse graphicscreensinsteadof,or inconjunctionwith.

thetextualscreensused for"help","why",orthequestionprompt.

The layout of the ask interface scn_,n consists of three areas:

1. An information box,

2. The question prompt, and

3. An area for the input of the user's answer.

The information box (Figure 1), located at the top of the screen, informs the user of the "help", "why", and

"abort" keys (F1, F2, and ESC, respectively). Based on the type of question, the information box tells the user what

type of input is expected. In Figure 1, the input expected is a single selection from the three alternatives in the menu
box. The second line in the information box gives brief instructions for selecting an answer.

FI: Help F2: Why ESC: Abon Input type: Single selectionMove to Choice: _l, then press enter to select

What is the seepage potential of the son
in the reservoir m-eaT

moderate

rapid

Figure 1. Layout of an ask question screen.

If the user presses the FI or F2 key, the ask program switches to a display screen to print the information pro-

vided by the knowledge engineer for the particular question property structure. "Help" or "why" information may be

a graphic image, text, both, or neither. If the ESC key is pressed, the intent of the user to abort the program is
confirmed with a dialogue box. If confirmed, both the operation of the interface and the operation of CLIPS is

aborted.

The text of the question is printed in the question prompt area. Ask provides formatting to fit the text nearly on

the screen. Below the question prompt is the user input area. It will be a menu box if the question type requires
selection from a list of alternatives. Two types of menus are available in ask, one allows the user to select a single

selection as an answer, and the other allows multiple selections. To select a single answer from the menu box, the

user moves to a choice with the mouse or "up-down" arrow keys to highlight a choice. When the user presses the

enter key, the highlighted selection is returned to CLIPS. To select multiple answers from a menu. the user may
"mark" a highlighted selection with the "right" arrow key. All selections either marked or highlighted when the

"enter" key is hit will be returned to CLIPS.

46O
pun/uelmerf_e -3

Menu selection is appropriate only when specific answers are expected. To obtain more open-ended responses,

ask can prompt for input of text or a number. In this case, a simple prompt for the information is printed in the user

input area. Ask can be given a range for numerical entry, and will constrain the user's entry as needed.

Errors

All interface functions are equipped with abilities to detect and report errors. An error is generated when the

information being passed to a function is inconsistent with the expected format. (These errors will generally pertain

to problems most likely to arise during development of an ES). The action taken by the functions in case of an error

is to abort all processes and print a diagnostic statement.

Using Ask in an Expert System

Ask is invoked with a frame-like parameter structure that passes it the information it needs to operate. One of

the first things that must be determined is the type of question screen it is to construct. As memioned above, the

four types of question screens ask generates are:

1. Multiple choice/single answer,

2. Multiple choiceJmultiple answer,

3. User input of text,

4. User input of numeric data.

For each question screen, a data structure for the ask function must be written. The data structures are stored in
CLIPS as facts. The data structure will tell the ask function how to formulate the question, what kinds of extra

information to provide to the user, how to retrieve the user's answer, and how to return the resulting answer to

CLIPS.

:L

Creating Instructions for Ask

We will refer to the above-men.ned data structures as "question property structures". CLIPS facts are stored

as '_fzelds", where each field is a word, number or "string" (a group of words or numbers contained in double

quotes). When ask is given a question property structure from which to build a question prompt, it examines the

fields one by one, looking for the information it needs.

There are two types of fields expected:

1. labels: Labels are key words used to identify the information that may follow in the next field(s). The ask

function expects exactly thirteen labels.

2. values: Values are the actual information ask will use to construct and ask the given question. The ask func-

tion requires some labels to be followed by values, some label's values may be a certain type, and some may
be ignorezl by the ask function (because they may apply elsewhere in the ES or are reserved for a furore use).

As ask reads through the labels and values of a question property structure, it deduces what type of question it is
to ask, based on the values. Table 1 is the list of labels and values, and how they are used by the ask function.

Constructing Question Property Structures

To use the ask function in a CLIPS program, question property structures must be entered as facts. Examples 1

through 4 demons_'ate question structures in their format as facts. Each example will produce a different type of

ask question screen.

461 Pu_luelnxerf_e-4

Example 1.

(sit e- name

prompt
"What is the name of the site you wish to evaluate?"

expect

help

why

value

value-type

default

range

certainty-range

unknown

gprompt ghelp gwhy

)

The above example illustrates a question property structure. The first field, (in this case, site-name), can be any

word, which is to say, any combination of legal characters, with no spaces. The purpose of this word is to label the

question property su-ucture, so that a rule could be constructed to look for a fact starting with the given word, which
it could match and fire (this is explained further in the discussion of the example nile, below).

This example demonstrates the simplest type of question property structure, because it uses the least amount of
information allowed: the labels, and a string value (the question) for the prompt. Values for all parameters except

prompt are optional. Since no values are given for the expect label, ask deduced the question was to be answered by
user input of text. To answer the question from the ask-generated interface, the user types in an answer, and presses

the "enter" key.

Example 2.

(seepage-rate

prompt

"What is the seepage potential of the soil in the reservoir

expect

slow moderate rapid

help

"A soil survey of the proposed reservoir site should provide

information concerning the seepage rate of soil at the site.

However, if the soil survey does not provide this information

answer the question as not being certain and additional

questions will be asked to evaluate the seepage rate."

why

value

value-type SINGLEVALUED

default

range

certainty-range

unknown

gprompt ghelp gwhy

)

area?"

462 l_l_ Inu_ -5

Them arc three primary differences between this question property s_'ucture (Example 2) and the last example:

1. Thr_ values are listed after the expect prompt, "slow", "moderau:", and "rapid". When ask reads these

values, it will set up a menu-type question, with the values to choose from.

2. Following the help label, is a value in the form of a string, "A soil survey of the proposed reservoir...". This is
to be the help message displayed wben the FI key is pressed when the question is asked. To include w_y
information in a question property structure, use the same method as for help. To view why information while
answering a question, the user presses the F2 key.

3. The third difference is the value SINGLEVALUED following the value-type label. This tells the ask function
to allow the user to select only one of the expect choices.

Example 2's question property structure produces a question with a menu-type answer selection (Figure 1). To

answer the question, the user points to a selection with a mouse or uses the up/down arrow keys to highlight a

choice, then the enter key to select the highlighted choice. The selection is returned to a CLIPS rule for processing.

Example 3 is a question property structure that will trigger ask to create a question that asks the user to input a

number. This was done by setting the value-type value to NUMERIC. Since the expected answers on many ques-

tions asking for numerical input will fall within some range, it is logical to set the range values. In this case, if the

user tries to enter a number outside the range of I to 10000, ask will inform the user of the range imposed and

prompt the user to try again.

Example 3 offers two types of help to the user, text and graphic. The text can be seen following the help label.

The name of the graphic image file, "area.hip" appears following the label ghelp. "Ar_a.hlp" is the name of the

graphic image file to be shown to the end-user if help is requested.

Example 3.

(surface-area

prompt

"What is the

if the water

expect

help

surface area of the reservoir, in acres,

in the reservoir is at its normal depth?"

"To determine the surface area of the proposed reservoir

at its normal depth, a survey of the area or a blown-up

USGS map of the reservoir site is needed. A planimeter

should be used to determine the area from the survey

why

value

value-type NUMERIC

default

range I i0000

certainty-range

unknown

gprompt

ghelp area.hlp

gwhy

)

or map."

463 l_m'oe In_-,'." - 6

Example 4.

(water-use

prompt

"What is the intended use of the water that will be impounded

in the reservoir?"

expect

water-supply recreation flood-control

help

"More than one of the expected values can be selected."

why

value

value-type MULT IVALUED

default

range

certainty-range

unknown YES

gprompt

ghelp

gwhy

)

Example 4 causes the ask function to generate a question menu that allows the user to choose more than one

option, because the value for value-type is set to MULTIVALUED. Another feature of the question is that it offers

the option "unknown" in the menu, as well as the listed expect options "water-supply", "recreation', and "flood-

control". This is because the value "YES" appears after the label "unknown'.

To answer this question with multiple answers, the user selects choices by highlighting a choice, and pressing

the fight arrow key. This "marks" the highlighted selection. (Inversely, if the left arrow key is pressed, a

highlighted choice is "un-marked"). Other choices can be highlighted and marked. When enter is pressed, all

choices that are highlighted or marked arc returned m CLIPS as the answer.

Example $. An Example Program Using Ask

(deffacts menus

(site-name

...rest of question property

(seepage-rate

...rest of question property

(surface-area

...rest of question property

(water-use

...rest of question property

structure...)

structure...)

structure...)

structure...))

(defrule interrogator-rule

?d <-(?question-name prompt $?question-prop-strct)

m>

(bind ?result (ask $?question-prop-strct))

(assert (?question-name ?result))

(retract ?d))

464 pu.hz _u_. 7

Points of Interest

Our example program consists of only four facts (Examples 1 through 4) and one rule. For this reason it is

practical to put all the necessary information in one knowledge base file. The CLIPS command, deffacts, defines
information to be loaded as facts. (There me other ways to load or enter facts into the CLIPS knowledge base,

which we will not concern ourselves with here).

The "interrogator" Rule

The function of the only rule in our ES is to find the question property structure facts, call ask to get an answer

from the user, and then assert that answer as a fact in the knowledge base (also called the fact-list). This rule is

used in all knowledge bases that use the interface and will call the ask function for all question property structure
facts.

The Show Function

The show function provides a means to display text to the user. Its primary use in an ES is displaying results to
the end-user. The text may be stored in a CLIPS fact or in a text file. In either ease, show is passed text, which it

parses into lines to fit in a display box on the screen. The user pages through the text until all has been shown.

Example 6. A fact and rule used to invoke show

(results show "The numerical rating of the site for use as a

dam site is: -100. The ratings range from -100 to I00 with

100 being the best possible rating of a site for the construction

of a dam and reservoir.")

(defrule show-results

(declare (salience -i000))

(? show $?x)
m>

(show $?x))

Example 6 shows a rule and a fact that would match the conditions of the rule. Presumably the fact shown was

created during the end-users consultation with the ES. The (salience -1000) would give the rule a low
priority to fire, thus effectively holding the showing of results until the end of the consultation. The rest of the rule
matches a condition with the fact, setting the variable $?x to the textual contents of the fact. The action statement,

(show $?x), calls the show function and passes the fact's contents.

The Title Function

Another accessory interface function is title, which can be passed five strings of text to be displayed as a title
screen. The first four lines are centered and displayed in a box drawn on the screen, and the fifth allows for the

optional display of a copyright note at the bottom of the title box.

465 Pu.l_e In.ace - 8

Example 7. A fact and rule used to invoke title.

(dss-title title "DSS: Dam Site Selector" "Agricultural

"Purdue University" "Bernie Engel Dave Beasley"

"Copyright 1989 Purdue Research Foundation")

(defrule display-title

(declare (salience I000))

(? title $?x)

i>

(title $?x))

Engineering"

Example 7 illustrates that the title function is used much the same as the show function. One difference is how

title'stextinputsarebrokenintoseparatestrings,toindicatetotheprogram what istoappearon eachof theavail-

abletidescreenlines(Figure2).The onlyothernoticeabledifferenceissaliencewhich issettoI000,toinsurethat

displayingthetitlescreenisa highpriority,sinceitshouldbe thefirstthingtheend-usersees.

DSS: Dam Site Selector

Agriculuwal Engineering

Purdue University

Bernie Engel Dave Beasley

Copyright1989 Purdue Resemch Foundation

Figure 2. A title screen produced by Example 7.

Programming Notes

The developmentoftheinterfacefunctionswas done on a PC-AT, usingthe"C' language.The sourcecode of

the interface programs and CLIPS was compiled and linked together to make a customized executable CLIPS pro-

gram.The executableprogram runson IBM PC-compatiblemachines.Knowledge engineersmay thendevelopES

using the customized CLIPS shell, making use of the additional functions ask, show, and title.

466 PunlueIMP-,- - 9

General Interface

A more general purpose version of the interface was developed by re-writing portions of the PC interface func-
tions. The general purpose interface will work on any machine that rims CLIPS. As stated earlier, one of the rea-

sons for moving w CLIPS was because of its ability to run on a wide variety of machines. The general interface
version uses numbered menus with items selected by typing the number associated with the menu item. It does not

allow the use of graphics nor does it use boxes around text as the PC version. CLIPS knowledge bases function
identical for either interface, allowing applications to operate on a variety of machines.

Interface Application

The interface functions have been used in the development and conversion of several ES. Four of the ES that

were transformed from commercial development/delivery tool formats into CLIPS are DAM SITE SELECTOR

(DSS) [3], DOUBLE-CROP [4], MELON [5], and the GRAIN MARKETING ADVISOR (GMA) [6]. DAM SITE

SELECTOR logically rates potential dam sites and provides an explanation of the factors influencing that rating.
DOUBLE-CROP assists with the decision making processes in managing double crop soybeans following winter

wheat. MELON assists muskmelon producers with proper management of their crop and with diagnosis and treat-
ment of diseases. The GRAIN MARKETING ADVISOR assists grain producers in the selection of the appropriate

grain marketing strategy for their situation. These knowledge bases in their original format required a commercial

runtime tool to operate. After the transformation process, these knowledge bases run without a commercial tool and
will run on a wider variety of computers. Minor information is lost in the n-ansformation process, but other infor-

marion is gained [7]. Additional details describing the knowledge base transformation process are provided by

Engel et al. [7].

Conclusions

A PC-based end-user interface package has been created and integrated into the CLIPS ES development and

rim-time tool. CLIPS lacks an easy-to-use end-user interface development tool commonly found in many commer-

cial ES development shells. The end-user interface development package has successfully been used to add inter-
faces to several CLIPS ES, in transformed knowledge bases, and in the development of new CLIPS ES. A similar

set of C-based functions that are more general and thus will run on UNIX and other machines have also been

developed and tested.

Benefits gained by using the parameter-driven interface package include:

. Less programming time is needed to complete the development of an application.

• Developers need not worry about many of the details of screen control or other output device-dependent prob-
lerns.

• Uniformity and modularity is improved across the various programs developed that utilize the interface pack-

age.

467 pe,eeeI.._d,_e - Io

References

I. Kendall, Kenneth, & Kendall, Julie 1988. Systems Analysis and Design. Prentice-Hall, Inc. Engiewood Cliffs,

NJ.

2. Faneud, Ross, & Kirk, Steven 1988. A UIMS for Building Metaphoric User Interfaces. In James A. Hender (ed.),

Expert Systems: The User Interface, Norwood, NJ:Ablex.

3. Engel, B.A. and D.B. Beasley. 1988. DSS: A dam site selector expert system. In D. Hay (ed.), Planning Now
for Irrigation and Drainage in the 21st Century, American Society of Civil Engineers, New York, New

York. p. 553-560.

4. Halterman, S.T., J.R. Bar_tt, and M.L. Swearingin. (1988). "Double Cropping Expert System", in the TRAN-

SAC'I'IONS of the ASAE, 31(1):234-239.

5. Latin, R., G.E. Miles, J.C. Rettinger, and J.R. MimheU. (1989). "An Expert System for Diagnosing Muskmelon

Disorders", in Plant Disease, vol. 73.

.

o

Thieme, R.H., J.W. Uhrig, R.M. Peart, A.D. Whittaker, and J.R. Barrett. (1987). "Expert System Techniques

Applied to grain Marketing Analysis", in Computers and Electronics in Agriculture 1:299-308.

Engel, B.A., C. Baffaut, J.R. Barrett, J.B. Rogers, D.D. Jones. 1990. Knowledge transformation. Applied

Artificial Intelligence 4:67-80.

468 P,N_],_,_. II

Properly

prompt

expect

help

why

value

value-type

ddimlt

range

cert_nty.q'a_

ulM_nowln

IWrompt

ghdp

g_y

Table 1. The ask function question property smacture requirements.

U,edfm_.q..;m_mu

The prompt libel must always be foUowed by • su'in8 value, which is the question to be asked of the user.

These are the al','nrumve 1_•ponses that may be pm, vided for the user m choose from. AM_ will pwaent the alter-

mmves in the form of • menu. U the t.xpecl libel is not followed by alxemmv_, uk essumes it U not to _-

stme, • m-lt/pie-ch_cc mswcr in the form of • menu. b_ mine.reel w/n assume t,h•t the form|t _ be:user input

of • number or te=L

An Ol_onal string foUowms this libel is KIdiuonal information about the topic d the queamon thin may be of

help to the user to undenumd the quexd¢_ or explain how it is to be amwemd. The htip label may be followed

by noth_, or the h_p ,_xt sumS.

An op6onal string following this libel iofonns the user why the information requested by the quemon is rasp•r-

Ural The way]abe| may be followed by nc_hing, or the why Icxt in quotes,

This properly is ignored by she ask funcuon. However, a singli-fc]d v4due m•y be stcm_l in the dot foUowing

th_ isbeL

When the expect property is followed by altenmdve answers, ask will prel_re • menu from which the user may

choose anmc_g the altesnauves. The vah,_-typ¢ pmpem/allows the know_.dge engineer to indic•-" whether the

l_ven quest/on may be answew.d by on]y one or more-than-one of the a]temmt/ves. The _l_-t_mr property may

also be used to indies-- •numencal mpm is to be expected. Po.ibk values for the va/_,-r_ p_xq_Nmy am

,..¢INGI._VALUED, w_ch kr_J/cal_ only one wJectkm is sUowed; MULTIVALUED, which means the user may

,:home one or morn altc_Uves; and NUMERIC, meaning the user is to input • number. If NUMERIC is

specified, there should be no expect values. IIrOtis pnc_eny is ieh blink. $1NGLEVAIJ/ED is *.sumed.

This property is ignored by the _ funmcr.. A sinsle-fidd value fordefault may be _ m the slot foUowing

this label.

When the knowledge enginuer wishes the user to emer • nunmri_ tnswer to a question and needs to restrict the

range of values the user may enter, the range property should be used. The values for this wopeny should be

two numbers separated by • bis_. The ask func:don will nqu/R the user's _swer to be between the two

numbers. If vaiut.typ* is NUMERIC and no nmge is ,et, ask will allow s_/number bawem -1000000000 and

1000000000. If the desired type of quest/on is not to be numerical inpta, the range values must be blank. Alto.

no gxp_ctvalues an_ al_owed in• quest_n when numer_al mpm is dusiReL

This Wol_y is il_ by the uk fun•ion, but the libel e,rtamty.rantt must be he_. Two mnenca] values

may be slor_ m slotsfoUowmg this label

_xis property am be used ff the Imowk_clge mgmeer wishes ua/mown to be included as one of the mmu al,,.nm-

"vs. If followed by the value of y_a. the option _ will be raided to List of al_nmuve,.

Ifthe questionis to use • graphic_prompt, thentlm labelshould be foUowed by _he file name of tbe image.

Ifthe quef6on istouse • graphicshelp,thenthislabelshould be fol}owed by the filenm of the _nage`

Ifthequest/onisto use a graphieswby. thenthiskbed sho_dd be folkmn:d bY the 51e name °fthe U"age`

469 _ ln_rf•ce - 12

